诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
新冠感染实施“乙类乙管”后 家庭、学校、公共场所消毒怎么做?******
随着国家将新型冠状病毒肺炎更名为新型冠状病毒感染,自2023年1月8日起,解除对新型冠状病毒感染采取的《中华人民共和国传染病防治法》规定的甲类传染病预防、控制措施,实施新型冠状病毒感染“乙类乙管”。依据新冠主要传播途径为经呼吸道飞沫和密切接触传播,在相对封闭的环境中经气溶胶传播,接触被病毒污染的物品后也可能造成感染,根据《新型冠状病毒感染防控方案(第十版)》等相关要求,上海市防控办环境整治消毒专班、上海市疾病预防控制中心发出新冠病毒感染消毒提示,详见 ↓
新冠感染者康复期间居家消毒
1. 感染者居家隔离期间,尽可能待在通风较好、相对独立的房间,尽量使用单独卫生间,减少与同住人员近距离接触,如条件允许使用单独的卫生间。房间内配备体温计、纸巾、口罩、一次性手套、消毒剂等个人防护用品和消毒产品及带盖的垃圾桶。避免与同住人员共用餐具、毛巾、床上用品等日常生活用品。
2. 感染者与共同居住者或陪护人员尽量减少直接接触,接触时双方均佩戴口罩,讲究咳嗽礼仪,注意手卫生。
3. 在做好居室日常清洁卫生的基础上,居家加强开窗通风,重点做好餐饮具、居室台面、门把手、电灯开关等接触频繁部位及浴室、卫生间等共用区域的清洁和消毒。共用区域感染者每次使用后及时消毒。
4. 感染者产生的生活垃圾装入塑料袋,放置到专用垃圾桶,清理前用消毒剂喷洒至完全湿润,然后扎紧塑料口袋,再和家里其他垃圾一起丢弃。
5. 感染者转阴后对感染者使用过的物品和接触过的物体表面分类有针对性地开展一次彻底的消毒。对于不适宜消毒处理的物品,如书籍、贵重物品,可通过密闭封存、室温静置7至10天方式进行处理。
6. 使用化学消毒剂消毒时居家以擦(拖)拭、浸泡消毒为主。使用常规家用清洁消毒产品按说明书使用,注意清洁剂和消毒剂的安全存放。
公共场所消毒
7. 公共场所等人员聚集的场所在新冠病毒感染流行期间应加强日常预防性消毒。可通过持续开窗通风保持室内空气流通,不具备自然通风条件的,可用排风扇、空调系统等进行持续的机械通风。按相关要求定期对空调通风系统进行清洁维护和消毒。
8. 公共餐(饮)具、共用的毛巾、浴巾等物品应按要求一人一用一清洗消毒。先清洗后消毒,首选煮沸、流通蒸汽或相应的消毒柜消毒。
9. 公众经常接触的电梯按钮、门把手、水龙头等环境物体表面,以及公共卫生间,应安排专人进行清洁消毒,根据使用人员数量相应增加消毒频次。
10. 拖布、抹布等卫生用具,不同的区域避免交叉混用,使用后使用消毒液进行浸泡消毒,并用清水冲洗干净,晾干存放。
11. 垃圾收集清理时,塑料袋严密包扎后,用消毒液对垃圾袋外表面进行喷洒消毒,再运送至垃圾投放点。
12. 工作人员出现新冠感染后,应对其可能污染的物品、环境、垃圾等由消毒专业人员开展终末消毒。
重点单位消毒
13. 托幼机构、中小学校、养老机构等重点单位在新冠病毒感染流行期间应安排专人开展日常预防性消毒工作,消毒人员应经过规范的消毒培训。
14. 幼儿、学生和老人等所在的室内场所每日定时开窗通风,不具备自然通风条件的,可用排风扇、空调系统等进行持续的机械通风,必要时使用有效的循环风空气消毒机开展消毒。并按相关要求定期对空调通风系统进行清洁维护和消毒。
15. 食品应烧熟煮透。加工食品过程中做好个人防护,戴口罩、手套,严格手卫生。冰箱内储存的食品如果受到污染,应按垃圾处理;冰箱内壁、物品外包装如果受到污染,在冰箱内温度恢复常温后进行消毒处理。
16. 公共餐(饮)具、共用的毛巾、浴巾等物品应按要求一人一用一清洗消毒。先清洗后消毒,首选煮沸、流通蒸汽或相应的消毒柜消毒。
17. 对于幼儿、学生和老人等经常接触的电梯按钮、门把手、水龙头、餐桌等环境物体表面,以及公共卫生间,应安排专人定时进行清洁消毒。
18. 拖布、抹布等卫生用具,不同的区域避免交叉混用,使用后使用消毒液进行浸泡消毒,并用清水冲洗干净,晾干存放。
19. 出现新冠感染后,应对其可能污染的物品、环境、垃圾等由消毒专业人员开展终末消毒。
注意事项
20.消毒方法优先选用阳光暴晒、热力等物理消毒方法,对于环境物体表面可以采用化学消毒剂擦拭的方式。
21. 消毒液要现用现配。消毒剂尤其含氯消毒剂具有一定的刺激性,配制和使用时应注意个人防护,并防止溅到眼睛。同时消毒剂具有一定的腐蚀性,注意达到消毒时间后用清水擦拭,防止对物品造成损坏。
22.消毒液应单独使用,不与其他化学成分混合使用,使用前认真阅读消毒产品说明书,严格按照说明书规定的使用范围、使用方法、作用浓度、作用时间正确使用。
23. 消毒应科学规范,避免过度消毒,不直接使用消毒剂对人体进行喷洒消毒,不在有人条件下对室内空气使用化学消毒剂喷雾进行消毒,不使用酒精对空气或大面积喷洒消毒。
24. 消毒剂应存放于阴凉避光处,避免与药品混放或儿童触及。(总台央视记者 王殿甲 央视新闻客户端)
(文图:赵筱尘 巫邓炎)